Customization: | Available |
---|---|
Type: | Titanium Bars |
Application: | Industrial, Medical, Chemical Industry, Aviation |
Still deciding? Get samples of US$ 1/kg
Request Sample
|
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
Material | Titanium rod and bar Gr1 Gr2 Gr7 Gr12 |
Standard | ASTM B348, ASTM SB348, AMS 4921, AMS 4902 |
Dimensions | EN, ASTM, JIS, ASME, BS, AISI |
Diameter Range | 0.125″ - 14″ (3.175mm - 355.6mm), custom |
Length Range | Up to 240″ (6096mm), custom |
Finish | Cold (bright) drawn, centreless ground, hot rolled, smooth turned, peeled, slit rolled edge, hot rolled annealed, Rough Turned, Bright, Polish, Grinding, Centreless Ground & Black |
Surface Finish | Cold drawn, Centerless Ground, Polished, Or Rough Turned, Black, NO.4 Finish, BA Finish, Matt Finish, etc. |
Condition | Hardened & tempered, annealed |
Tolerance | Diameter tolerance: +/- 0.005″ (0.127mm), length tolerance: +/- 0.125″ (3.175mm) |
Form | Titanium square bars, titanium ingots, titanium round bars, rectangular titanium bars, triangular titanium bars, forged titanium bars, titanium hexagonal bars, etc. |
Daxun Alloys stocks Grade 1 Titanium Rod, Grade 2 Titanium Rod, Grade 5 Titanium Rod in various diameters to meet the specific needs of your project, from general industrial to military aerospace applications. We stock Titanium Alloy Rods in sizes from 1mm diameter to 300mm diameter and accept custom orders for larger sizes, please contact Daxun for a quote. Titanium Rods are certified to ASTM B348 and ASTM B381. Feel free to contact Daxun to purchase. We offer high quality pure titanium rods and titanium alloy rods, and we will be happy to advise you if you have any questions.
Daxun has a complete technology cycle: from raw material processing to the production of finished products with a high degree of mechanical processing.Bar product is stocked throughout our service center network to allow for fast, off-the-shelf delivery of common sizes and alloys.We also manufacture custom sizes and can arrange for stocking programs for quick turnaround on a just-in-time basis for quantities of less than mill minimum.
Daxun's forming capabilities include state-of-the-art radial forging machines, heat treatment furnaces, melting furnaces and rolling mills for manufacturing titanium bars, and a unique hydroforming process for manufacturing parts.
Daxun's titanium alloy bars and titanium rod heat treatment adopts advanced heat treatment furnace equipment to ensure the stability and high performance of the material. Daxun makes it a reliable
Daxun titanium rods are smelted using the world's most advanced electron beam cooling furnace to reduce impurities during the smelting process and improve the performance of the finished titanium rods.
About the chemical composition of(Ti 6AL-4V) grade 5 Titanium rods
Chemical Composition: | |||
Symbol | Element | Min % | Max % |
Al | Aluminum | 5.50% | 6.75% |
V | Vanadium | 3.50% | 4.50% |
Fe | Iron | 0.30% | |
O | Oxygen | 0.20% | |
C | Carbon | 0.08% | |
N | Nitrogen | 0.05% | |
H | Hydrogen | 0.01% | |
Y | Yttrium | 0.01% | |
Other, each | 0.10% | ||
Other, total | 0.40% | ||
Ti | Titanium | Remainder |
Physical Properties | Metric | English | Comments |
Density | 4.43 g/cc | 0.16 lb/in³ | |
Mechanical Properties | |||
Hardness, Brinell | 334 | 334 | Estimated from Rockwell C. |
Hardness, Knoop | 363 | 363 | Estimated from Rockwell C. |
Hardness, Rockwell C | 36 | 36 | |
Hardness, Vickers | 349 | 349 | Estimated from Rockwell C. |
Tensile strength | min. 895MPa | 129810 psi | |
Yield strength | min. 828MPa | 120090 psi | |
Elongation at Break | min.10 % | 10 % | |
Reduction of Area | min.25 % | 25 % |
About the chemical composition of grade 2 Titanium rods
Element | Weight % |
C | ≤0.08 |
O | ≤0.25 |
N | ≤0.03 |
H | ≤0.015 |
Fe | ≤0.30 |
*OEE | ≤0.10 |
*OET | ≤0.40 |
Ti | Remaining |
About the mechanical properties of Grade 2 Titanium rods
Alloy | UNS Designation | Spec. | Tensile Strength (min.) | Yield Strength 0.2% Offset (min.) | Elongation in 2 inches (min.) | Max Hardness | Modulus of Elasticity (x106 psi) | Mean Coefficient of Thermal Expansion IN./IN./°F x 10-6) | Thermal Conductivity (BTU-in/ft2-h-°F) | ||||
psi | MPa | ksi | psi | MPa | ksi | % | |||||||
Grade 2 Titanium | R50400 | B338 | 50,000 | -345 | 50 | 40,000- | (276-448) | 40-65 | 20 | - | 16 | 5.1 | 144 |
50,000 |
Element | Minimum (weight %) | Maximum (weight %) | Typical (weight %) |
Fe | 0.2 | ||
O | 0.18 | ||
C | 0.08 | ||
N | 0.03 | ||
H | 0.015 | ||
Ti | Balance |
Density | |
lb/in3 | g/cm3 |
0.163 | 4.51 |
Tensile Strength | |
ksi | MPa |
35 min | 240 min |
Yield Strength | |
ksi | MPa |
20 min | 138 min |
Hardness | |
70 HRC max | |
Elongation | |
24% min |
Element | Minimum (weight %) | Maximum (weight %) | Typical (weight %) |
---|---|---|---|
Al | 2.5 | 3.5 | |
V | 2.0 | 3.0 | |
Fe | 0.25 | ||
O | 0.15 | ||
C | 0.08 | ||
N | 0.03 | ||
H | 0.015 | ||
Ti | Balance |
CP GR1 Titanium rods PHYSICAL PROPERTIES | |||
Physical Properties | Metric | English | Comments |
Density | 4.50 g/cc | 0.163 lb/in³ | |
a Lattice Constant | 2.95 Å @Temperature 25.0 °C | 2.95 Å @Temperature 77.0 °F | alpha phase |
3.29 Å @Temperature 900 °C | 3.29 Å @Temperature 1650 °F | beta phase | |
c Lattice Constant | 4.683 Å | 4.683 Å @Temperature 77.0 °F | c/a = 1.587 |
Mechanical Properties | Metric | English | Comments |
Hardness, Brinell | 120 | 120 | annealed |
Hardness, Knoop | 132 | 132 | Estimated from Brinell. |
Hardness, Rockwell B | 70 | 70 | annealed |
Hardness, Vickers | 122 | 122 | Estimated from Brinell. |
Tensile Strength | 124 - 138 MPa @Temperature 427 °C | 18000 - 20000 psi @Temperature 801 °F | |
152 - 179 MPa @Temperature 316 °C | 22000 - 26000 psi @Temperature 601 °F | ||
193 - 207 MPa @Temperature 204 °C | 28000 - 30000 psi @Temperature 399 °F | ||
Tensile Strength, Ultimate | 240 MPa | 34800 psi | |
Tensile Strength, Yield | 170 - 310 MPa | 24700 - 45000 psi | |
76.0 - 90.0 MPa @Temperature 427 °C | 11000 - 13100 psi @Temperature 801 °F | 0.2% offset | |
83.0 - 103 MPa @Temperature 316 °C | 12000 - 14900 psi @Temperature 601 °F | 0.2% offset | |
110 - 124 MPa @Temperature 204 °C | 16000 - 18000 psi @Temperature 399 °F | 0.2% offset | |
Elongation at Break | 24% | 24% | |
25 - 30 % @Temperature 427 °C | 25 - 30 % @Temperature 801 °F | ||
30 - 35 % @Temperature 316 °C | 30 - 35 % @Temperature 601 °F | ||
40 - 50 % @Temperature 204 °C | 40 - 50 % @Temperature 399 °F | ||
Reduction of Area | 35% | 35% | |
Tensile Modulus | 103 GPa | 14900 ksi | |
Compressive Modulus | 110 GPa | 16000 ksi | |
Poissons Ratio | 0.37 | 0.37 | |
Shear Modulus | 45.0 GPa | 6530 ksi | |
Charpy Impact | 310 J | 229 ft-lb | V-notch |
Impact Test | 136 J | 100 ft-lb | Impact Strength |
Coefficient of Friction, Dynamic | 0.68 | 0.68 | Ti sliding on Ti; 300 m/min |
0.8 | 0.8 | Ti sliding on Ti; 40 m/min |
CP GR2 Titanium rods PHYSICAL PROPERTIES | |
Density | Magnetic Permeability |
0.163 lbs/in-3 | Nonmagnetic |
4.51 g/cm-3 | Electrical Resistivity |
Beta Transus (+/-25°F, +/--3.9°C) | 21 µΩ/in |
1680°F | 0.53 µΩ/m |
915°C | Elastic Modulus |
Thermal Conductivity | 15.2-17.4 Msi |
12.60 BTU hr-1ft-1 °F-1 | 105-120 GPa |
21.79 W m-1 °C-1 | Typical values at room temperature of about 68-78°F (20-25°C) |
GR5 TI6AL4V Titanium rods PHYSICAL PROPERTIES | |||
Physical Properties | Metric | English | Comments |
Density | 4.43 g/cc | 0.16 lb/in³ | |
Mechanical Properties | |||
Hardness, Brinell | 334 | 334 | Estimated from Rockwell C. |
Hardness, Knoop | 363 | 363 | Estimated from Rockwell C. |
Hardness, Rockwell C | 36 | 36 | |
Hardness, Vickers | 349 | 349 | Estimated from Rockwell C. |
Tensile strength | min. 895MPa | 129810 psi | |
Yield strength | min. 828MPa | 120090 psi | |
Elongation at Break | min.10 % | 10 % | |
Reduction of Area | min.25 % | 25 % | |
Modulus of Elasticity | 113.8 GPa | 16500 ksi | |
Compressive Yield Strength | 970 MPa | 141000 psi | |
Notched Tensile Strength | 1450 MPa | 210000 psi | Kt (stress concentration factor) = 6.7 |
Ultimate Bearing Strength | 1860 MPa | 270000 psi | e/D = 2 |
Bearing Yield Strength | 1480 MPa | 215000 psi | e/D = 2 |
Poisson's Ratio | 0.342 | 0.342 | |
Charpy Impact | 17 J | 12.5 ft-lb | V-notch |
Fatigue Strength | 240 MPa | 34800 psi | at 1E+7 cycles. Kt (stress concentration factor) = 3.3 |
Fatigue Strength | 510 MPa | 74000 psi | Unnotched 10,000,000 Cycles |
Fracture Toughness | 75 MPa-m½ | 68.3 ksi-in½ | |
Shear Modulus | 44 GPa | 6380 ksi | |
Shear Strength | 550 MPa | 79800 psi | Ultimate shear strength |
Electrical Properties | |||
Electrical Resistivity | 0.000178 ohm-cm | 0.000178 ohm-cm | |
Magnetic Permeability | 1.00005 | 1.00005 | at 1.6kA/m |
Magnetic Susceptibility | 3.30E-06 | 3.30E-06 | cgs/g |
Thermal Properties | |||
CTE, linear 20°C | 8.6 µm/m-°C | 4.78 µin/in-°F | 20-100ºC |
CTE, linear 250°C | 9.2 µm/m-°C | 5.11 µin/in-°F | Average over the range 20-315ºC |
CTE, linear 500°C | 9.7 µm/m-°C | 5.39 µin/in-°F | Average over the range 20-650ºC |
Specific Heat Capacity | 0.5263 J/g-°C | 0.126 BTU/lb-°F | |
Thermal Conductivity | 6.7 W/m-K | 46.5 BTU-in/hr-ft²-°F | |
Melting Point | 1604 - 1660 °C | 2920 - 3020 °F | |
Solidus | 1604 °C | 2920 °F | |
Liquidus | 1660 °C | 3020 °F | |
Beta Transus | 980 °C | 1800 °F |
Detailed Introduction of Grade 5 Titanium Rod and Grade 2 Titanium Rod
Grade 5 Titanium Rod
Daxun Daxun, spearheading the industry with a state-of-the-art production facility in China, offers highly competitive and high-precision Grade 5 titanium bars. Boasting an unparalleled surface finish, tight tolerance, perfect straightness, and superior material quality, we ensure technological leadership and consistent production processes. Whether you require a diverse range of diameters or materials, Daxun delivers excellence. Additionally, our comprehensive stock program at our service center guarantees just-in-time delivery for your convenience.
AMS 4928 - Bars, Forgings, and Forging Stock (Annealed)
AMS 4965 - Bars, Forgings (Solution treated and aged)
AMS 4967 - Bars, Forgings (Annealed, Heat Treatable)
In the solution treated and aged condition, rapid quenching of small sections yields optimal properties. However, larger section sizes and/or delayed quenching may result in less than optimal properties.
Typical hardness in the annealed condition ranges from Rockwell C 30-34, while in the solution treated and aged condition, it ranges from Rockwell C 35-39.
The Ti-6Al-4V, Grade 5 alloy bar can be machined using methods suitable for austenitic stainless steel, emphasizing slow machining speeds, high feeds, rigid tools, and ample use of non-chlorinated cutting fluids.
The Ti-6Al-4V, Grade 5 alloy rod is highly versatile, offering exceptional weldability in both the annealed and solution partially aged conditions. Post-weld heat treatment ensures optimal aging. To maintain its integrity, it is crucial to avoid contamination from oxygen, nitrogen, and hydrogen. Fusion welding is best performed in an inert gas environment, safeguarding the molten metal and adjacent heated zones with a tail shield. Additionally, spot, seam, and flash welding can be executed without the need for a protective atmosphere, ensuring seamless application.
The Ti-6Al-4V, Grade 5 titanium alloy rod requires careful handling to prevent contamination. Improper pickling can introduce hydrogen, while forging, heat treating, and brazing can lead to oxygen, nitrogen, and carbon contamination. Such impurities can compromise the ductility of the material, negatively impacting its notch sensitivity and forming characteristics.
We tailor our bar production to meet your specific requirements, ensuring precision and quality.
Our bars boast excellent surface finish, perfect straightness, roundness, and the tightest diameter tolerances (as per ISO 286-2 up to h5). We offer these in straightened, ground, and polished conditions for unparalleled quality.
Sawing
Band saws (up to Ø510 mm)
Bench band saws (up to 6,000 x 3,000 x 400 mm)
High-performance sawing machines guarantee precise, accurate cuts for all your needs.
Available in single or double-sided configurations for versatile applications.
Chamfer 90° (45°) for enhanced precision.
Point 60° (30°) for specialized requirements.
Flat end for standard applications.
Centered for balanced performance.
ASTM (American Society for Testing and Materials) Standards
AMS (American Aerospace Materials) Standards
NACE (American Association of Corrosion Engineers International) Standards
ASME (American Society of Mechanical Engineers) Standards
GB (Chinese National Standards)
GJB (Chinese National Military Standards)
ISO (International Standards)
DIN (German Standards)
EN (European Standards)
API (American Petroleum Institute) Standards
Non-destructive testing > 100% to ensure uncompromised quality.
Testing Methods
Eddy current testing/eddy current *** testing
Defect-free surface (level 4)
Flat bottom hole diameter 0.7 mm and 0.4 mm
Blind area can be cut off according to fixed length >Test to the end of the bar
Full diameter ultrasonic testing
Purchase orders should include quantity, grade, type or category, API5L reference, thickness, width, length, and any applicable attachments or additional requirements related to chemical composition, mechanical properties, heat treatment, additional testing, manufacturing process, surface coating or end finish. Contact Daxun now, we will reply to your email as soon as possible.
Titanium should not be used with strong reducing acids, fluoride solutions, pure oxygen, or anhydrous ***.
The general corrosion rates for Grade 2 titanium in a variety of media are shown in Table 1. CP titanium exhibits good corrosion resistance to a wide variety of environments including:
CP titanium exhibits good resistance to crevice corrosion in salt solutions compared to stainless steels. CP titanium will not exhibit crevice corrosion at temperatures under 80 °C ( 176°F) regardless of pH, even under super chlorinated conditions.
Grade 2 titanium shows excellent resistance to stress corrosion (SCC) cracking in hot chloride solutions and is immune to sec in seawater.
Titanium shows excellent resistance to erosion in flowing
seawater with velocities up to 130 ft/sec ( 40 m/sec) showing negligible effect on the material. The presence of abrasive particles, such as sand, has only a small effect on corrosion.
There is no significant absorption of hydrogen into titanium exposed to seawater, even at higher temperatures. Normally hydrogen absorption occurs only when the three following conditions are met:
Titanium alloys exhibit remarkable immunity to microbiologically influenced corrosion. While they do not show toxicity toward marine life, biofouling in seawater can occur. This issue can be effectively managed through chlorination or by increasing water velocity within heat exchangers.
Titanium stands out as it maintains fatigue performance even in seawater. Both fatigue endurance limits and fatigue *** growth rates remain consistent whether in air or seawater, setting titanium apart from many other materials.
In the galvanic series, titanium is positioned near the noble end, similar to stainless steels. It typically acts as a cathode when paired with other metals, remaining unaffected by galvanic corrosion while potentially accelerating the corrosion of the anode metal. When coupled with more noble metals like graphite, titanium's passivity is further enhanced.
Grade 2 Titanium Rod exhibits no degradation in fatigue properties in seawater. Its fatigue endurance limits and *** growth rates are unchanged whether assessed in air or seawater, demonstrating exceptional performance.
CP2 Grade Titanium Rod offers excellent weldability with proper precautions. Due to titanium's reactivity, an inert gas shield is essential on both the OD and ID of the rod. The material must also be free of any grease or oil contamination to ensure optimal welding conditions.
Typically, Grade 2 Titanium Rod is welded using manual or automatic TIG welding methods, with or without filler wire. Employing low heat input minimizes the size of the heat-affected zone. Post-weld heat treatment is generally not required for Titanium Rod.
Working material: | 3.7035 / UNS R50400 |
Diameter: | 3 - 400 mm |
Lengths: | 2.000 - 4.000 mm |
Versions: | Rolled, forged, annealed |
Surfaces: | Turned, peeled, polished |
Standards: | ASTM B 348, ASME SB 348, DIN 17862, ASTM F 67, NACE MR 0175, ISO 1515156-3, ISO 5832-2 |
Searching for round rod material made of Grade 2 Titanium Alloy Rod-3,7035? At Daxun, we offer customized titanium rods, backed by our extensive experience as a reliable supplier ready to support your project needs.
We provide Grade 2 Titanium bars in diameters ranging from 2.0 mm to 400 mm. Execution and tolerances may vary, with small diameters delivered centerless ground to h7 tolerances, and larger diameters to h9 or h11 tolerances.
6d67bb4c
Q1: What products can you offer?
A: We offer a wide variety of steel types, including 310S, 316L, 304, 304L, 201, 904L, 316H, 316, and 316L.
Additionally, we provide 400 series stainless steel, duplex stainless steels such as 2205, 2304, 2101, and 2507, as well as high-nickel alloys like 904L, 800H, and 600H.
Q2. Can you produce the products according to my own drawings?
Yes, we specialize in custom production based on your specific drawings to ensure utmost satisfaction.
Q3. How does your factory do regarding quality control?
Quality is our top priority. We maintain stringent quality control measures from the beginning to the end of the production process.
Q4. Can I request to change the form of packaging and transportation?
Yes, we can modify the packaging and transportation according to your specific requests,
though you will be responsible for any additional costs incurred during this period.
Q5. How does your factory do regarding quality control?
Quality is our top priority. We maintain stringent quality control measures from the beginning to the end of the production process.
Q6. How long is the delivery time?
A: Delivery typically takes 7~20 working days after payment confirmation.
For urgent orders, we can expedite the process to meet your deadlines.
Q7. What is your Payment?
A: 100% T/T in advance, or Western Union for smaller orders.
B: 30% T/T upfront, with the remaining 70% before shipment.
C: 100% Irrevocable LC at sight for larger orders.
Q8: Can you make DDQ (Deep Drawing Quality)?
A: Yes, our materials are suitable for deep drawing applications such as stainless steel pots, sinks, and bowls. Tell us your specific use case and we will adjust the mechanical properties to meet your needs.
Q9: How to get a sample?
A: FREE samples are available for your evaluation. For small pieces, we may cover the courier costs, depending on the situation.
Q10: Which countries have you exported to?
A: We have exported stainless steel materials to various countries including Vietnam, Thailand, Turkey, Russia, Morocco, Korea, India, Pakistan, UAE, Ukraine, and more.
Q11: How can I visit your company?
A: You can fly to Guangzhou Baiyun International Airport, where we will pick you up.